skip to main content


Search for: All records

Creators/Authors contains: "Davis, James C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2024
  2. This paper systematizes knowledge about secure software supply chain patterns. It identifes four stages of a software supply chain attack and proposes three security properties crucial for a secured supply chain: transparency, validity, and separation. The paper de- scribes current security approaches and maps them to the proposed security properties, including research ideas and case studies of supply chains in practice. It discusses the strengths and weaknesses of current approaches relative to known attacks and details the various security frameworks put out to ensure the security of the software supply chain. Finally, the paper highlights potential gaps in actor and operation-centered supply chain security techniques. 
    more » « less
  3. Training deep neural networks (DNNs) takes significant time and resources. A practice for expedited deployment is to use pre-trained deep neural networks (PTNNs), often from model zoosÐcollections of PTNNs; yet, the reliability of model zoos remains unexamined. In the absence of an industry standard for the implementation and performance of PTNNs, engineers cannot confidently incorporate them into production systems. As a first step, discovering potential discrepancies between PTNNs across model zoos would reveal a threat to model zoo reliability. Prior works indicated existing variances in deep learning systems in terms of accuracy. However, broader measures of reliability for PTNNs from model zoos are unexplored. This work measures notable discrepancies between accuracy, latency, and architecture of 36 PTNNs across four model zoos. Among the top 10 discrepancies, we find differences of 1.23%ś2.62% in accuracy and 9%ś131% in latency. We also find mismatches in architecture for well-known DNN architectures (e.g., ResNet and AlexNet). Our findings call for future works on empirical validation, automated tools for measurement, and best practices for implementation. 
    more » « less
  4. Deep neural networks achieve state-of-the-art performance on many tasks, but require increasingly complex architectures and costly training procedures. Engineers can reduce costs by reusing a pre-trained model (PTM) and fine-tuning it for their own tasks. To facilitate software reuse, engineers collaborate around model hubs, collections of PTMs and datasets organized by problem domain. Although model hubs are now comparable in popularity and size to other software ecosystems, the associated PTM supply chain has not yet been examined from a software engineering perspective. We present an empirical study of artifacts and security features in 8 model hubs. We indicate the potential threat models and show that the existing defenses are insufficient for ensuring the security of PTMs. We compare PTM and traditional supply chains, and propose directions for further measurements and tools to increase the reliability of the PTM supply chain. 
    more » « less
  5. Software metrics capture information about software development processes and products. These metrics support decision-making, e.g., in team management or dependency selection. However, existing metrics tools measure only a snapshot of a software project. Little attention has been given to enabling engineers to reason about metric trends over time—longitudinal metrics that give insight about process, not just product. In thiswork,we present PRIME (PRocess MEtrics), a tool to compute and visualize process metrics. The currently-supported metrics include productivity, issue density, issue spoilage, and bus factor.We illustrate the value of longitudinal data and conclude with a research agenda. The tool’s demo video can be watched at https://bit.ly/ase2022-prime. Source code can be found at https://github.com/SoftwareSystemsLaboratory/prime. 
    more » « less
  6. Autonomous vehicles (AVs) use diverse sensors to understand their surroundings as they continually make safety-critical decisions. However, establishing trust with other AVs is a key prerequisite because safety-critical decisions cannot be made based on data shared from untrusted sources. Existing protocols require an infrastructure network connection and a third-party root of trust to establish a secure channel, which are not always available.In this paper, we propose a sensor-fusion approach for mobile trust establishment, which combines GPS and visual data. The combined data forms evidence that one vehicle is nearby another, which is a strong indication that it is not a remote adversary hence trustworthy. Our preliminary experiments show that our sensor-fusion approach achieves above 80% successful pairing of two legitimate vehicles observing the same object with 5 meters of error. Based on these preliminary results, we anticipate that a refined approach can support fuzzy trust establishment, enabling better collaboration between nearby AVs. 
    more » « less
  7. Computer vision on low-power edge devices enables applications including search-and-rescue and security. State-of-the-art computer vision algorithms, such as Deep Neural Networks (DNNs), are too large for inference on low-power edge devices. To improve efficiency, some existing approaches parallelize DNN inference across multiple edge devices. How-ever, these techniques introduce significant communication and synchronization overheads or are unable to balance workloads across devices. This paper demonstrates that the hierarchical DNN architecture is well suited for parallel processing on multiple edge devices. We design a novel method that creates a parallel inference pipeline for computer vision problems that use hierarchical DNNs. The method balances loads across the collaborating devices and reduces communication costs to facilitate the processing of multiple video frames simultaneously with higher throughput. Our experiments consider a representative computer vision problem where image recognition is performed on each video frame, running on multiple Raspberry Pi 4Bs. With four collaborating low-power edge devices, our approach achieves 3.21× higher throughput, 68% less energy consumption per device per frame, and a 58% decrease in memory when compared with existing sinaledevice hierarchical DNNs. 
    more » « less
  8. As we add more autonomous and semi-autonomous vehicles (AVs) to our roads, their effects on passenger and pedestrian safety are becoming more important. Despite extensive testing before deployment, AV systems are not perfect at identifying hazards in the roadway. Although a particular AV’s sensors and software may not be 100% accurate at identifying hazards, there is an untapped pool of information held by other AVs in the vicinity that could be used to quickly and accurately identify roadway hazards before they present a safety threat. 
    more » « less
  9. null (Ed.)
    Low-power computer vision on embedded devices has many applications. This paper describes a low-power technique for the object re-identification (reID) problem: matching a query image against a gallery of previously-seen images. State-of-the-art techniques rely on large, computationally-intensive Deep Neural Networks (DNNs). We propose a novel hierarchical DNN architecture that uses attribute labels in the training dataset to perform efficient object reID. At each node in the hierarchy, a small DNN identifies a different attribute of the query image. The small DNN at each leaf node is specialized to re-identify a subset of the gallery---only the images with the attributes identified along the path from the root to a leaf. Thus, a query image is re-identified accurately after processing with a few small DNNs. We compare our method with state-of-the-art object reID techniques. With a ~4% loss in accuracy, our approach realizes significant resource savings: 74% less memory, 72% fewer operations, and 67% lower query latency, yielding 65% less energy consumption. 
    more » « less